
XPOS 
 

 

 

 

 

 

XP-3615, XP-3685W USER MANUAL 



 
 

 
 

 Copyright 

 

This document is copyrighted, ©  2018. All rights are reserved. No part of this 

document may be reproduced, copied, translated, or transmitted in any form or by any 

means without the prior written permission from Firich Enterprise Co., Ltd. Information 

provided in this manual is intended to be accurate and reliable. However, Firich 

Enterprise Co., Ltd. assumes no responsibility for its use, nor for any infringements 

upon the rights of third parties, which may result from its use.  

 

The material in this document is for product information only and is subject to 

change without notice. While reasonable efforts have been made in the preparation of 

this document to assure its accuracy, Firich Enterprise Co., Ltd., assumes no liabilities 

resulting from errors or omissions in this document, or from the use of the information 

contained herein. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 
 

 VERSION CONTROL 

 

Date Version Change Description PM 

11/27 1.0 Initial Version Yuting Kao 

01/22 1.1 Added 15.6 specifications; Other minor modifications Yuting Kao 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 
 

 TABLE OF CONTENTS 
 

1. INTRODUCTION  
XP-3685 Basic Introduction                                                                 005 - 009                                                                                         

Dimensions           010 - 010 

Specification           011 - 011 

Packing List           012 - 012 

2. SOFTWARE INSTALLATION AND SETUP 
Installation Order          012 - 012 

Chipset            013 - 014 

Audio            014 - 014 

Graphics           015 - 015 

Intel ME           016 - 016 

Serial IO           017 - 017  

USB LAN           018 - 018  

Windows Driver           020 - 020  

Set COM           021 – 021 

Sensor            020 - 020  

Intel®  Rapid Storage Technology        022 - 023 

ADB Android Debug Bridge         023 - 023 

 

3. Hardware 

Access Storage Device          023 - 024 

Adding or Removing M.2 PCBA from M.2 Tray       025 - 025 

Access the Motherboard         026 - 027 

Install or Remove Memory         027 - 028 

 

4. IO Board SDK Instruction 

Overview           028 - 028 

System Requirements & Installation        029 - 030 

DLL Interface for FEC Io Board SDK        030 - 032 

Example of DLL Interface         033 - 033 

EXE Interface for FEC Cash Drawer SDK        033 - 034 

 

5. Software 

Developers Guide for Serial Communications                                                         034 - 041 

 Ambient Light and Proximity Sensor        041 - 043 

 Control the Sensor Timing         044 - 044 

 Cash Drawer Command           045 - 045 

 

 



 
 

 
 

 XP-3685 Basic Introduction 
 

 XPOS XP-3685 is a fifteen inch all in one fanless point of sales system powered by Intel®  7th 

generation Celeron, i3 and i5 processors. By utilizing slim key components and enclosing them in an 

aluminum die-casting chassis, XP-3685 is able to achieve both a slim and strong design. The IO 

interface is connected with an USB cable and installed inside the stand base.  

 The dual hinge stand provides the user the ability to adjust the stand and display angles 

making it optimal for all environments. 

 On the bottom of the display is a standard 2in1 sensor. The proximity sensor can detect a 

presence infront of the sensor and wake the system up from an S1 and S3 sleep state allowing users 

to save on power consumption when the store traffic is low.  

 Slim Panel PC 2.4cm 

 Fanless Design 

 2in1 Sensor: Ambient Light Sensor & Proximity Sensor 

 Dual Hinge Stand: High Profile and Low Profile 

 Integrated and Extended 2nd Display Options 
 

 

 



 
 

 
 

 

 

 

 



 
 

 
 

 

 

 

 

 



 
 

 
 

 

 

 

 

 

 

 Power Button with LED: 

Red = Power adaptor connected but system is off 

Blue = System is on 

 Storage LED 

Orange = Flashing during storage activity 

 

 

 

 



 
 

 
 

 

 

 

 

 



 
 

 
 

 Dimensions 

 

 

 



 
 

 
 

 SPECIFICATION 
 

 Panel PC 

Description XP-3685  

Processor Intel®  Celeron®  Processor 3965U, 2M Cache, 2.20 GHz 

Intel® Core™ i3-7100U Processor, 3M Cache, 2.40 GHz  

Intel® Core™ i5-7300U Processor, 3M Cache, up to 3.50 GHz 

System Memory 4GB Standard, Maximum 32GB (2 x 260-pin DDR4) 

Storage Device Celeron: 1 x M.2 (B+M Key) SATA III and PCIE, 1 x M.2 (BM Key) SATA III 

i3 & i5: 2 x M.2 (B+M Key) SATA III and PCIE 

Speaker 2 x 2W Internal Speaker 

Construction Aluminum Die-casting + Plastic + Glass 

Housing Color Galaxy Gray + Black  

Silver + Black 

Touch LCD Display   

Size / Resolution 15” TFT-LCD / 1024 x 768 15.6” TFT-LCD / 1920 x 1080 

Brightness / Backlight  400nits (LED) PCAP 400nits (LED) PCAP  

Panel PC IO   

USB Port 1 x USB 1.0 Type A, 1 x USB 2.0 Type A  

1 x USB DP (Reserved for 2nd Display) 

FEC DP Port 1 x FEC DP Port (Customer Display or Integrated 2nd Display) 

 

 IO Options 

 

IO1  

System on Module (SOM) 

Optional  

ARM Cortex A7 Quad Core  

1G DDR3 On Board  

8GB eMMC 5.0 On Board 

SD Card Slot 1 x SD Card Slot (Must Have SOM) 

Video Port 1 x Video Port (Must Have SOM) 

USB DP 2 x USB DP Port (1Reserved to Connect to Panel PC) 

USB Port 4 x USB 2.0 Type A 

LAN Port 1 x LAN (Green Light Mega LAN, Orange Light Giga LAN) 

Serial Port 2 x RJ45 (RS232) 

DC-in  1 x DC-in for 90W (20V/4.5A) Adaptor 

 

 



 
 

 
 

 Packing List 
 

Standard Optional 

XP-3685 x 1 

M.2 Tray x 1 

COM RJ45 to DB9 Cable x 2 

90W Adaptor x 1 

Power Cord x 1 

Driver and Manual CD x 1 

WiFi Module x 1 

M.2 Tray x 1 

Add-on Device x1 

Customer Display x 1 

2nd Display x 1 

 

 

 Software Installation and Setup: Motherboard 
Follow the below order if installation for the Motherboard: 

 

○1 Chipset ○2  Audio ○3  Graphics ○4  Intel®  ME  

○5  Setup Serial IO ○6  USB LAN ○7  Windows Drivers ○8  Set COM  

○9  Intel®  Rapid Storage Technology (RST) (Applicable to i3 & i5) ○10  ADB Driver (Applicable to SOM) 

 

 Un-compress files 

 
 



 
 

 
 

1. Chipset 
 

 Locate chipset folder and double click on [ SetupChipset ] 

 
 Click [ Next ]  Click [ Accept ] 

  

 Click [ Install ]  Click [ Yes ] 

 
 

  Click [ Restart Now ] 
 

  



 
 

 
 

   2. Audio 

 

 Double click [ Setup ]  Click [ Yes ] 

  

 Click [ Next ] 
 Click [ Yes, I want to restart my 

computer now ], [ Finish ] 

  
 

 

 

 

 

 

 

 

 



 
 

 
 

   3. Graphics 

 Double Click [ igxpin ]  Click [ Yes ] 

 
 

 Click [ Next ]  Click [ Next ] 

  
 Click [ Finish ] 

 
 

 

 



 
 

 
 

   4. Intel®  ME 

 Double Click [ SetupME ]  Click [ Next ] 

 
 

 Accept Terms then click [ Next ]  Click [ Next ] 

  
 Click [ Yes ]  Click [ Finish ] 

 

 
  

 

 



 
 

 
 

   5. Serial IO 

 Double Click [ SetupSerialIO ]  Click [ Next ] 

  
 Accept terms then click [ Next ]  Click [ Next ] 

  

 Click [ Next ]  Select Yes, I want to restart this 

computer now the click [ Finish ] 

  
 

 

 



 
 

 
 

   6. USB LAN 

 Double Click [ Setup]  Click [ Yes ] 

  

 

 
 

 

   7. Windows Driver 

 Double Click [ CP210XVCPInstaller_x64 ]  Click [ Yes ] 

 
 



 
 

 
 

   8. Set COM and COM Address 

1. Double click [ SetXPOSCOM ] 

 You will see the COM is set in Device Manager 

 

COM Address 

You can check Ports (COM & LPT) in the Device Manager 

 

After the SET COM you should see the below items in the Device Manager: 

 Communications Port (COM1): FEC DP interface reserved for customer display 

 Communications Port (COM2): Reserved on motherboard 

 Silicon Labs Quad CP2108 USB to UARD Bridge: Interface 0 (COM98): GPIO Control for IO1 

 Silicon Labs Quad CP2108 USB to UARD Bridge: Interface 1 (COM3): RJ45 Interface on IO for Devices 

 Silicon Labs Quad CP2108 USB to UARD Bridge: Interface 1 (COM4): RJ45 Interface on IO for Devices 

 Silicon Labs Quad CP2108 USB to UARD Bridge: Interface 1 (COM3): RJ45 Interface on IO for Devices 

 Intel iAMT: Available on i3 and i5 models 

 

 

 

 

 



 
 

 
 

   9. Sensor 

 Double Click [ install ]  Click [ Yes ] 

  

Press any key to continue … 

 
 

   9. Intel®  Rapid Storage Technology (RST) 

For additional information about Intel RST: https://downloadcenter.intel.com/product/55005/Intel-

Rapid-Storage-Technology-Intel-RST-  

 

 Double Click [ SetupRST] 

 

 Click [ Yes ] 

  
 

 

 

 

https://downloadcenter.intel.com/product/55005/Intel-Rapid-Storage-Technology-Intel-RST-
https://downloadcenter.intel.com/product/55005/Intel-Rapid-Storage-Technology-Intel-RST-


 
 

 
 

 Accept terms then click [ Next ]  Click [ Next ] 

  
 Choose save location and click [ Next ]  Click [ Next ] 

  
 Click [ Install ] Choose to restart then click [ Finish ] 

 

 
 

 

 

 

 



 
 

 
 

   10. ADB (Android Debug Bridge) 

This driver is only applicable the system on module (SOM) is installed 

 Double Click on [ DriverInstall ]  Click [ Install Driver ] 

 

 

 Click [ OK ]  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 
 

 Hardware 
 

 Access Storage Device 

1. Make sure the system is turned off (If using RAID system can be on) 

2. Flip open the cover which is held together by magnets 

 

3. Remove the screw(s) 

 

 

 



 
 

 
 

 

4. If you are using RAID, follow the below step. If not, skip this step. Make sure to flip the small 

switch to the right ► to turn off the power to the storage device. After the M.2 is inserted, flip 

the switch back to on ◄. 

 

 

5. Flip open the handle and slowly pull out the M.2 Tray 

 

 

 

 

 

 



 
 

 
 

 Adding or removing M.2 from tray 

Note: This image is taped on the M.2 tray for users to identify which direction to place the M.2 

module as well as how to install the M.2. 

 

 
 

1. Remove Screw 

 

2. Slowly slide out the M.2 module 

 

 

 

 

 



 
 

 
 

 Accessing the Motherboard 

1. Remove the 3 screws as shown below 

 

 

 

2. Remove the bottom plastic away from the aluminum chassis. 

 

3. Slide the display module ~1cm as shown below 

 

4. Lift the display up. There will be cables between the panel and motherboard. Reach your hand 

in and disconnect the cables on the motherboard. 

 



 
 

 
 

 

 

 

 Memory 

1. Slightly pull to the memory socket to the left and right. The memory will pop up 

 



 
 

 
 

 

 

2. Remove the memory 

 

 



 
 

 
 

 3. IO Board SDK Instruction 

 

1. Overview 

This document describes about how to use the FEC IO Board SDK to control IO functions on FEC IO 

Board via serial interface. The FEC IO Board SDK support the DLL and EXE interface controlling IO on 

windows application 

 

The IO functions are: 

 COM A: RS232 Port A Enable/Disable, 5V/12V Setting 

 COM B: RS232 Port B Enable/Disable, 5V/12V Setting 

 Cash Drawer: Open, Get status 

 USB Smart COM: Enable/Disable 

 Reset SOM (Android System) 

 Reset CCG4 USB Type-C Control IC 

 

 

2. System Requirement & Installation 

Supported Operating System(OS) 

Microsoft®  Windows 10 IOT Enterprise LTSB 

 

Installation 

 

 Click [ FECIOBoardSDKSETUP.exe ]  Click [ Install ] 

 

 

 
 

 
 Once completed, click [ Close ]  FEC IO Board SDK will installed in 

C:\Program Files(x86)\FEC\IOBoardSDK 



 
 

 
 

 

 

 

 

3. DLL Interface for FEC IO Board SDK 

FEC IO Board SDK provide DLL interface to control IO Board, the DLL name is fec_xpos_ioboard_dll.dll. 

API Functions & definitions 
#define CTL_COM_MODE_RI           0x00 

#define CTL_COM_MODE_DC           0x01 

#define CTL_COM_PWR_5V            0x02 

#define CTL_COM_PWR_12V           0x03 

#define CTL_CASH_OUT_LOW          0x04 

#define CTL_CASH_OUT_HIGH         0x05 

#define CTL_CASH_OUT_HIGH_200MS   0x06 

#define CTL_CASH_PWRSEL_12V       0x07 

#define CTL_CASH_PWRSEL_24V       0x08 

#define CTL_SOM_RST_LOW           0x09 

#define CTL_SOM_RST_HIGH          0x10 

#define CTL_TYPEC_FW_RS_LOW       0x11 

#define CTL_TYPEC_FW_RS_HIGH      0x12 

#define CTL_SMART_COM_BYPASS             0x13 

#define CTL_SMART_COM_SMART_COM        0x14 

 DLLExport int SetComAMode(int mode) 

This function enable/disable the COM Port A power supply 
Parameter: 

int mode: 

CTL_COM_MODE_RI (0x00): Disable COM A Power supply 

CTL_COM_MODE_DC (0x01): Enable COM A Power supply 

Return Value: 

Fail: 1 

Success: 0 

 DLLExport int SetComAPwr(int pwrmode) 

This function set the COM Port A power level to 5V or 12V 
Parameter: 

int pwrmode: 

CTL_COM_PWR_5V (0x02): Set to 5V 

CTL_COM_PWR_12V (0x03) : Set to 12V 

Return Value: 

Fail: 1 



 
 

 
 

Success: 0 

 DLLExport int SetComBMode(int mode) 

This function enable/disable the COM Port B power supply 
Parameter: 

int mode: 

CTL_COM_MODE_RI (0x00): Disable COM B Power supply 

CTL_COM_MODE_DC (0x01): Enable COM B Power supply 

Return Value: 

Fail: 1 

Success: 0 

 DLLExport int SetComBPwr(int pwrmode) 

This function set the COM Port B power level to 5V or 12V 
Parameter: 

int pwrmode: 

CTL_COM_PWR_5V (0x02): Set to 5V 

CTL_COM_PWR_12V (0x03) : Set to 12V 

Return Value: 

Fail: 1 

Success: 0 

 DLLExport int SetCashDrawer1(int mode) 

This function opens the Cash Drawer GPIO 1 
Parameter: 

int mode: 

CTL_CASH_OUT_HIGH_200MS (0x06): Open the cash drawer 

Return Value: 

Fail: 1 

Success: 0 

 DLLExport int SetCashDrawer2(int mode) 

This function opens the Cash Drawer GPIO 2 
Parameter: 

int mode: 

CTL_CASH_OUT_HIGH_200MS (0x06): Open the cash drawer 

Return Value: 

Fail: 1 

Success: 0 

 DLLExport int SetCashDrawerPwrSel(int pwrmode) 

This function set the cash drawer power level 
Parameter: 

int pwrmode: 

CTL_CASH_PWRSEL_12V (0x07): Set to 12V 

CTL_CASH_PWRSEL_24V (0x08) : Set to 24V 

Return Value: 

Fail: 1 

Success: 0 

 DLLExport int GetCashDrawerStatus(BYTE *byStatus) 

This function gets the cash drawer status (Open or Close) 
Parameter: 

BYTE *byStatus:  

*byStatus  = 0: Close 



 
 

 
 

*byStatus  = 1: Open 

Return Value: 

Fail: 1 

Success: 0 

 DLLExport int SetSomReset(int mode) 

This function reset the SOM Android system 
Parameter: 

int mode: Don’t care (Set to 0~255) 

Return Value: 

Fail: 1 

Success: 0 

 DLLExport int SetSmartCom (int mode) 

This function set the Smart COM enable or bypass 
Parameter: 

int mode: 

CTL_SMART_COM_BYPASS (0x13): Set Smart COM to bypass 

CTL_SMART_COM_SMART_COM (0x14): Set Smart COM enable 

Return Value: 

Fail: 1 

Success: 0 

 DLLExport int GetAllStatus(BYTE *byStatus) 

This function gets all the GPIO pin status on IO Board 
Parameter: 

BYTE *byStatus: 

0 = low, 1 = high 

byStatus [0], bit0 --> COMA_MODE 

byStatus [0], bit1 --> COMA_PWR 

byStatus [0], bit2 --> COMB_MODE 

byStatus [0], bit3 --> COMB_PWR 

byStatus [0], bit4 --> CashDrawer_GPIO0 

byStatus [0], bit5 --> CashDrawer_GPIO1 

byStatus [0], bit6 --> CASH_PWRSEL 

byStatus [0], bit7 --> CASH_IN 

byStatus [1], bit0 --> SOM_RST 

byStatus [1], bit1 --> TYPEC_FW_RS 

byStatus [1], bit2 --> SMART_COM 

Return Value: 

Fail: 1 

Success: 0 

 DLLExport int GetFwVersion(BYTE * byVersion) 

This function gets the FW version for IO Board FW. 
byStatus [0]  High byte of the FW version number 

byStatus [1]  Low byte of the FW version number 

Return Value: 

Fail: 1 

Success: 0 

 

 



 
 

 
 

4. Example for DLL Interface 

FEC_IOBoard_Utility: Please refer the sample workspace: “FEC_IOBoard_Utility” create by Visual Studio 

2015 for the sample code. 
 

The screenshot for FEC_IOBoard_Utility: 

 
C#: 

[DllImport("fec_xpos_ioboard_dll", CharSet = CharSet.Unicode)] 

public static extern int SetComAMode(int mode); 

const int CTL_COM_MODE_RI         = 0x00; 

const int CTL_COM_MODE_DC         = 0x01; 

SetComAMode(CTL_COM_MODE_RI); 

SetComAMode(CTL_COM_MODE_DC); 

5. EXE Interface for FEC Cash Drawer SDK 

Enable COM Port A Power 

Set the COM Port A Power Enable with the parameter 1: “SetComAMode” & parameter 2: “enable” or 

“disable” 
> FEC_XPOS_IOBoard_Tester.exe SetComAMode enable 

> FEC_XPOS_IOBoard_Tester.exe SetComAMode disable 

Enable / Disable the COM Port B Power 

Set the COM Port B Power Enable / Disable with the parameter 1: “SetComBMode” & parameter 2: 

“enable” or “disable” 
> FEC_XPOS_IOBoard_Tester.exe SetComBMode enable 

> FEC_XPOS_IOBoard_Tester.exe SetComBMode disable 

Set the COM Port A Power level 

Set the COM Port A Power to 5v / 12v with the parameter 1: “SetComAPwr” & parameter 2: “5v” or 

“12v” 
> FEC_XPOS_IOBoard_Tester.exe SetComAPwr 5v 

> FEC_XPOS_IOBoard_Tester.exe SetComAPwr 12v 

Open the Cash Drawer 1 

Open the Cash Drawer 1 with the parameter 1: “SetCashDrawer1” & parameter 2: “activate” 
> FEC_XPOS_IOBoard_Tester.exe SetCashDrawer1 activate 



 
 

 
 

Open the Cash Drawer 2 

Open the Cash Drawer 2 with the parameter 1: “SetCashDrawer2” & parameter 2: “activate” 
> FEC_XPOS_IOBoard_Tester.exe SetCashDrawer2 activate 

Set the Cash Drawer Power Level 

Set the Cash Drawer Power Level to 12v/24v with the parameter 1: “SetCashDrawerPwrSel” & 

parameter 2: “12v” or “24v” 
> FEC_XPOS_IOBoard_Tester.exe SetCashDrawerPwrSel 12v 

> FEC_XPOS_IOBoard_Tester.exe SetCashDrawerPwrSel 24v 

Get the Cash Drawer Status  

Get the Cash Drawer Status with the parameter : “GetCashDrawerStatus”  
> FEC_XPOS_IOBoard_Tester.exe GetCashDrawerStatus 

CashDrawer Status  = 0 means close 

CashDrawer Status  = 1 means open 

 

Reset the SOM 

Reset the SOM Android system with the parameter : “SetSomReset” 
> FEC_XPOS_IOBoard_Tester.exe SetSomReset 

 

Set the Smart COM enable/bypass 

Set the Smart COM enable/bypass with the parameter 1: “SetSmartCom” & parameter 2: “enable” or 

“disable” 
> FEC_XPOS_IOBoard_Tester.exe SetSmartCom enable 

> FEC_XPOS_IOBoard_Tester.exe SetSmartCom disable 

 

 

4. Software 
 

Developers Guide for Serial Communications 

This document is intended for developers creating products based on the CP210x USB to UART 

Bridge Controller. It provides information about serial communications and how to obtain the port 

number for a specific CP210x device. Code samples are provided for opening, closing, configuring, 

reading, and writing to a COM port. Also included is a Get PortNum function that can be copied and 

used to determine the port number on a CP210x device by using its Vendor ID (VID), Product ID (PID), 

and serial number. 
 

Opening a COM Port 
 

Before configuring and using a COM port to send and receive data, it must first be opened. When a 

COM port is opened, a handle is returned by the CreateFile() function that is used from then on for all 

communication. Here is example code that opens COM3: 



 
 

 
 

 
HANDLE hMasterCOM = CreateFile("\\\\.\\COM3", 

GENERIC_READ | GENERIC_WRITE, 

0, 

0, 

OPEN_EXISTING, 

FILE_ATTRIBUTE_NORMAL | FILE_FLAG_OVERLAPPED, 

0); 

 

The first parameter in the CreateFile() function is a string that contains the COM port number to use. 

This string will always be of the form \\\\.\\COMX where 'X' is the COM port number to use. The 

second parameter contains flags describing access, which will be GENERIC_READ and 

GENERIC_WRITE for the example in this document, and allows both read and write access. 

Parameters three and four must always be 0, and the flag in parameter five must always be 

OPEN_EXISTING when using CreateFile() for COM applications. The sixth parameter should always 

contain the FILE_ATTRIBUTE_NORMAL flag. In addition, the FILE_FLAG_OVERLAPPED is an optional 

flag that is used when working with asynchronous transfers (this option is used for the example in this 

document). If overlapped mode is used, functions that read and write to the COM port must specify 

an OVERLAPPED structure identifying the file pointer, which is demonstrated in the sections Purging 

the COM Port and Saving the COM Port's Original State (more information on overlapped I/O is 

located at https://msdn.microsoft.com/en-us/library/windows/desktop/ms686358(v=vs.85).aspx ). The 

seventh, and last, parameter must always be 0. 

If this function returns successfully, then a handle to the COM port will be assigned to the HANDLE 

variable. If the function fails, then INVALID_HANDLE_VALUE will be returned. Upon return, check the 

handle and if it is valid, then prepare the COM port for data transmission. 

 
 

 

Preparing an Open COM Port for Data Transmission 
 

Once a handle is successfully assigned to a COM port, several steps must be taken to set it up. The 

COM port must first be purged and its initial state should be retrieved. Then the COM port's new 

settings can be assigned and set up by a device control block (DCB) structure (more information is 

provided on the DCB structure in the section Setting up a DCB Structure to Set the New COM 

State and at https://msdn.microsoft.com/en-us/library/windows/desktop/aa363214(v=vs.85).aspx ). 

 

Purging the COM Port 

 

First, the COM port should be purged to clear any existing data going to or from the COM port using 

the PurgeComm() function:  

 
PurgeComm(hMasterCOM, PURGE_TXABORT | PURGE_RXABORT | PURGE_TXCLEAR | PURGE_RXCLEAR); 

 

The first parameter in the PurgeComm() function is a handle to the open COM port that will be 

purged. The second parameter contains flags that further describe what actions should be taken. All 

https://msdn.microsoft.com/en-us/library/windows/desktop/ms686358(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa363214(v=vs.85).aspx


 
 

 
 

four flags, PURGE_TXABORT, PURGE_RXABORT, PURGE_TXCLEAR, and PURGE_RXCLEAR should 

always be used. The first two flags terminate overlapped write and read operations, and the last two 

flags clear the output and input buffers. 

 

If this function returns successfully then a non-zero value is returned. If the function fails, then it 

returns 0. Upon return, check the return value; if it is non-zero, continue to set up the COM port 

(more information on the PurgeComm() function is located at https://msdn.microsoft.com/en-

us/library/windows/desktop/aa363428(v=vs.85).aspx ). 

 

Saving the COM Port's Original State 

 

Since the COM port settings can be modified to meet different needs, it is good practice to obtain the 

COM port's current state and 

store it so that when the COM port is closed, the COM port can be restored back to its original state. 

This can be done using the GetCommState() function: 

 
DCB dcbMasterInitState; 

GetCommState(hMasterCOM, &dcbMasterInitState); 

 

The first parameter in the GetCommState() function is a handle to the open COM port to obtain 

settings from. The second parameter is an address to a DCB structure to store the COM port's 

settings. This DCB structure should also be used as the initial state when specifying 

new settings for the COM port (see section Setting up a DCB Structure to Set the New COM State). 

If this function returns successfully then a non-zero value is returned. If the function fails, then it 

returns 0. Upon return, check the return value; if it is non-zero, continue to set up the COM port 

(more information on the GetCommState() function is located at https://msdn.microsoft.com/en-

us/library/windows/desktop/aa363260(v=vs.85).aspx ). 

 

Setting up a DCB Structure to Set the New COM State 

 

All of a COM port's settings are stored in a DCB structure. In section Saving the COM Port's Original 

State a DCB structure was retrieved that contained the initial settings of the COM port by using the 

GetCommState() function. To change a COM port's settings, a DCB structure must be created and 

filled out with the desired settings. Then the SetCommState() function can be used to activate 

those settings: 

 
DCB dcbMaster = dcbMasterInitState; 

 

dcbMaster.BaudRate = 57600; 

dcbMaster.Parity = NOPARITY; 

dcbMaster.ByteSize = 8; 

dcbMaster.StopBits = ONESTOPBIT; 

 

SetCommState(hMasterCOM, &dcbMaster); 

 

https://msdn.microsoft.com/en-us/library/windows/desktop/aa363428(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa363428(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa363260(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa363260(v=vs.85).aspx


 
 

 
 

Delay(60); 

 

Here a new DCB structure dcbMaster has been initialized to dcbMasterInitState, which are the 

current settings of the COM port. After it has been initialized to the current settings, new settings can 

be assigned. 
 

Baud Rate 

The baud rate property is set to 57600 bps, but can be set to any of the baud rates supported by the 

CP210x. (See the current datasheet for the list of supported baud rates for the CP210x.) 

 

Parity 

The parity is set to NOPARITY, however it can also be set to ODDPARITY, EVENPARITY, SPACEPARITY, 

and MARKPARITY if supported by the CP210x. (See the current data sheet for the list of supported 

parities for the CP210x.) 

 

Byte Size 

The byte size is set to 8, so there are 8 data bits in every byte of data sent. This can also be set to 5, 6, 

or 7 if supported by the 

CP210x. (see the data sheet for the list of supported byte sizes for the CP210x.) 

 

Stop Bits 

The stop bits are set to ONESTOPBIT, but could also be set to TWOSTOPBITS or ONE5STOPBITS (1.5). 

(See the current data sheet for the list of supported stop bits for the CP210x.) All combinations of 

data and stop bits can be used except for the combination of 5 data bits with 2 stop bits and the 

combination of 6, 7, or 8 data bits with 1.5 stop bits. After each of these settings is set to the desired 

value, the SetCommState() function can be called to set up the COM port. The first parameter in the 

SetCommState() function is a handle to the open COM port to change the settings on. The second 

parameter is an address to a DCB structure containing the COM port's new settings (more information 

on serial settings using DCB structures is located at https://msdn.microsoft.com/en-

us/library/windows/desktop/aa363214(v=vs.85).aspx  

 

If this function returns successfully, a non-zero value is returned. If the function fails, it returns 0. Upon 

return, check the return value; if it is non-zero, delay for 60 ms to allow time for the settings to 

change and then continue to set up the COM port. This delay is not required; however, a conservative 

time of 60 ms is good practice to ensure that the settings are changed before any other operations 

take place. 
 

 

Transmitting Data Across the COM Port 

 

Once the COM port is successfully opened and configured, data can be written or read. 

 

Writing Data 

 

https://msdn.microsoft.com/en-us/library/windows/desktop/aa363214(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa363214(v=vs.85).aspx


 
 

 
 

There are several things that need to happen in a write, so it is a good idea to create a function for 

the writes to be called whenever a write must occur. Here is an example of a write function: 

 
bool WriteData(HANDLE handle, BYTE* data, DWORD length, DWORD* dwWritten) 

{ 

bool success = false; 

OVERLAPPED o = {0}; 

 

o.hEvent = CreateEvent(NULL, FALSE, FALSE, NULL); 

 

if (!WriteFile(handle, (LPCVOID)data, length, dwWritten, &o)) 

{ 

if (GetLastError() == ERROR_IO_PENDING) 

 if (WaitForSingleObject(o.hEvent, INFINITE) == WAIT_OBJECT_0) 

  if (GetOverlappedResult(handle, &o, dwWritten, FALSE)) 

  success = true; 

} 

Else 

 success = true; 

 

if (*dwWritten != length) 

 success = false; 

 

CloseHandle(o.hEvent); 

 

return success; 

} 

 

The parameters passed in to this function are the handle to an open COM port, a pointer to an array 

of bytes that will be written, the number if bytes that are in the array, and a pointer to a variable to 

store and return the number of bytes written. Two local variables are declared at the beginning of the 

function: a bool named success that will store the success of the write (this is initialized to false, and 

only set true when the write succeeds) and an overlapped object o which is passed to the WriteFile() 

function and alerts if the transfer is complete or not (this is always initialized to {0} before the hEvent 

is assigned). Creating an event with the CreateEvent (NULL, FALSE, FALSE, NULL) function sets the 

hEvent property of o to prepare it to be passed to the WriteFile() function 

(more information on CreateEvent() is located at https://msdn.microsoft.com/en-

us/library/windows/desktop/ms682396(v=vs.85).aspx ). 

 

Next, the WriteFile() function is called with the handle, data, length of the data, and variable to store 

the amount of data that was written (more information on WriteFile() is located at 

https://msdn.microsoft.com/en-us/library/windows/desktop/aa365747(v=vs.85).aspx ). If this function 

returns successfully, a non-zero value is returned. If the function fails, it returns 0. The if statement will 

determine if the write succeeded and if it did not, the last error is retrieved to see if there really was 

an error or the write just wasn't finished. If ERROR_IO_PENDING is returned then object o is then 

waited on until either the write finishes or fails (if something other than ERROR_IO_PENDING is 

returned by the GetLastError() function, then there is the possibility of surprise removal; see section 

https://msdn.microsoft.com/en-us/library/windows/desktop/ms682396(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms682396(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa365747(v=vs.85).aspx


 
 

 
 

Application Design Notes for comments on surprise removal). When the wait is over, the result is 

obtained so that the amount of bytes written is updated. The success variable will then be assigned 

with the appropriate value, and the handle of o.hEvent is closed. Then the amount of bytes 

written is checked, and finally the function returns the success of the write, which will be true if the 

write successfully completed. 
 

 

Reading Data 

 

There are several things that need to happen in a read, so it is a good idea to create a function for the 

reads to be called whenever a read must occur. Here is an example of a read function: 
bool ReadData(HANDLE handle, BYTE* data, DWORD length, DWORD* dwRead, UINT timeout) 

{ 

 bool success = false; 

 OVERLAPPED o = {0}; 

 

 o.hEvent = CreateEvent(NULL, FALSE, FALSE, NULL); 

 

 

 if (!ReadFile(handle, data, length, dwRead, &o)) 

 { 

  if (GetLastError() == ERROR_IO_PENDING) 

   if (WaitForSingleObject(o.hEvent, timeout) == WAIT_OBJECT_0) 

    success = true; 

   GetOverlappedResult(handle, &o, dwRead, FALSE); 

 } 

 else 

  success = true; 

 

 CloseHandle(o.hEvent); 

 

 return success; 

} 

The parameters passed in to this function are the handle to an open COM port, a pointer to an array 

of bytes that will be read, the number if bytes that are in the array, a pointer to a variable to store and 

return the number of bytes read, and a timeout value. Two local variables are declared at the 

beginning of the function: a bool named success that will store the success of the read (this is 

initialized to false, and only set true when the read succeeds), and an overlapped object o which is 

passed to the ReadFile() function and alerts if the transfer is complete or not (this is always initialized 

to {0} before the hEvent is assigned). Creating an event with the CreateEvent(NULL, FALSE, FALSE, 

NULL) function sets the hEvent property of o to prepare it to be passed to the ReadFile() function 

(more information on CreateEvent() is located at 

https://msdn.microsoft.com/enus/library/windows/desktop/ms682396(v=vs.85).aspx ). 

Next, the ReadFile() function is called with the handle, data, length of the data, and variable to store 

the amount of data that was written (more information on the ReadFile() function is located at 

https://msdn.microsoft.com/en-us/library/windows/desktop/aa365467(v=vs.85).aspx ). If this function 

returns successfully then a non-zero value is returned. If the function fails, then it will return 0. 

https://msdn.microsoft.com/enus/library/windows/desktop/ms682396(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa365467(v=vs.85).aspx


 
 

 
 

The if statement will determine if the write succeeded and if it didn't, the last error is retrieved to see 

if there really was an error or the write just wasn't finished. If ERROR_IO_PENDING is returned then 

object o is then waited on until either the write finishes or fails (if something other than 

ERROR_IO_PENDING is returned by the GetLastError() function, then there is the possibility of 

surprise removal; see section Application Design Notes for comments on surprise removal). When 

the wait is over, the result is obtained so that the amount of bytes read is updated. The success 

variable will then be assigned with the appropriate value, and the handle of o.hEvent is closed. 

Finally, the function returns the success of the read, which will be true if the read successfully 

completed. 
 

 

 

Closing the COM Port 
 

After all communication is finished, then the COM port should then be closed. First, the COM port 

should be set back to its initial state, and then the handle to the COM port should be closed and set 

to an invalid handle. Example code is shown below: 

 
SetCommState(hMasterCOM, &dcbMasterInitState); 

 

Delay(60); 

 

CloseHandle(hMasterCOM); 

hMasterCOM = INVALID_HANDLE_VALUE; 

 

The SetCommState() function works the same as described in section Setting up a DCB Structure 

to Set the New COM State. A delay of 60 ms is used to make sure the settings have time to be set. 

Finally the device is closed using the CloseHandle() function. This function just takes in the handle of 

the COM port. After this function is called, it is important to set the variable to an 

INVALID_HANDLE_VALUE. 
 

 

Sample Program to Demonstrate Serial Communications 

 

Included in the AN197 software package is a directory named CP210xSerialTest which contains the 

source code and executables for a Visual Studio project that makes use of all the serial 

communication functions described in section Preparing an Open COM Port 

for Data Transmission, section Transmitting Data Across the COM Port, and section Closing the 

COM Port. The program is a basic dialog based application that accepts two COM port numbers, and 

then will send a test array of 64 bytes of data back and forth between them. 
 

 

Application Design Notes 
 



 
 

 
 

The functions used in sections Preparing an Open COM Port for Data Transmission, Transmitting Data 

Across the COM Port, and section Closing the COM Port are Windows COMM API functions. The 

examples provided are just samples of the recommended way of dealing with serial communication. 

For more specific information on these functions, see the MSDN website at: 

https://msdn.microsoft.com/enus/library/ff802693.aspx.  

It should also be noted that the SetCommState() function does not save the settings between 

opening and closing the COM port. As stated before, it is good practice to get the current settings 

after the COM port is opened, and then restore them before it is closed. All of the functions here will 

return an error code. It is a good idea to nest these functions in order to catch errors if they occur by 

using the GetLastError() function. This will also solve any surprise removal problems by allowing the 

discovery of an invalid handle to be found and dealt with. The example application (CP210xSerialTest) 

has several cases that will detect surprise removal. In this example, there are checks on every function 

to make sure that the return code is true. If it is not, then it will display where the error occurred in 

the output window. As long as correct and supported settings are passed to the functions they should 

execute normally. Most failures can occur from having an INVALID_HANDLE_VALUE, however, the 

handles must be set to this value after a surprise removal occurs. Because regular COM ports will 

always be visible, then data can always be written to them successfully, even if there is no way to read 

it. However, because the CP210x is a virtual COM port, if the device is removed, then the handle that it 

uses becomes invalid when trying to write to it. If for some reason the CP210x device is unplugged 

the write will fail and ERROR_OPERATION_ABORTED will be returned by GetLastError(). When this 

happens, the handle needs to be closed and then set to INVALID_HANDLE_VALUE. Alternatively, 

a regular COM port can always be read from, but if there is no data then it will time out. When using 

the CP210x as the virtual COM port and it is removed before a read occurs, then the read will fail and 

ERROR_ACCESS_DENIED will be returned by GetLastError(). 

Again when this happens, the handle needs to be closed and then set to INVALID_HANDLE_VALUE. 

 Enable and Disable Ambient Light and Proximity Sensor 

 

There are three ways to enable or disable the 2in1 sensor. 

 

1. Utility Batch File 

File is located in your Driver CD 

 
 

https://msdn.microsoft.com/enus/library/ff802693.aspx


 
 

 
 

2. BIOS 

1. Start up the system 

2. Press [ Delete ] during startup to enter BIOS 

3. Under Advanded > Sensor Device Configuration click Disabled to turn off, Sensor 1 to turn on 

proximity and anmbient light sensor. Sensor 2 has no function. 

Note: Sensor Service and BIOS Sensor settings both need to be on to work 

 
 

 

 

3. Windows 10 OS 

1. Under Computer Management go under Services and Applications to click on [ Services ]  

2. Click on [ Sensor Service ]  

 
 



 
 

 
 

3. Sensor Services Properties make sure the “Startup type” is set to Automatic.  

Click [ Start ] [ Apply ] [ OK ]  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 
 

 Control the Sensor Timing 

1. In the command prompt, type regedit and click enter  

      
 

2. Locate the following folder through this path HKEY_LOCAL_MACHINE >SOFTWARE > 

Microsoft > Windows NT > CurrentVersion > AdaptiveDisplayBrightness > {23B44AF2-

78CE-4943-81DF-89817E8D23FD} 

 

3. Click on CRI then the radio head decimal and change the number to the desired timing (ex 

3000 is approximately 3 seconds, 10000 is around 10 seconds) 

 

 
4. The sensor needs to be deactivated then reactivated under Computer Management > Sensor 

Services 

 



 
 

 
 

Cash Drawer Command 

Note: It is recommended that developers use the chapter 3: IO Board SDK Instruction  

Command: 

 

CashDrawer output 1: A5 01 05 02 6B 

Return 

A5 01 08 00 5B is Open 

A5 01 08 01 5B is Closed 

 

CashDrawer output 2: A5 01 06 02 6B  

Return 

A5 01 08 00 6B is Open 

A5 01 08 01 6B is Closed 

 


